

Fig. 2. Schematic diagrams of other types.

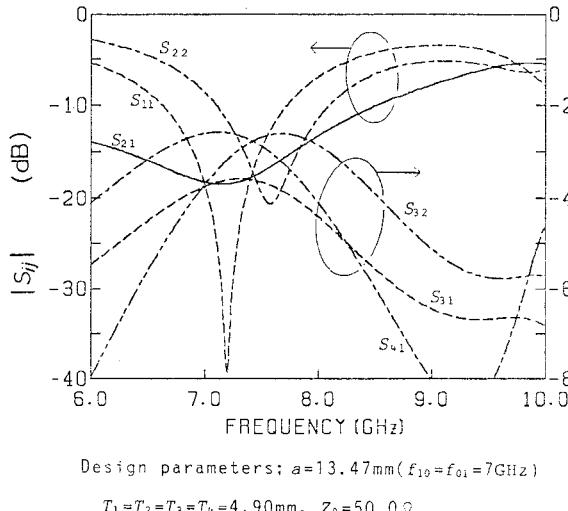


Fig. 3. Computed values of $|S_{ij}|$ vs. frequency for a fundamental type-A hybrid.

Scattering matrices

The impedance-matrix elements of the circuit shown in Fig. 1 can be obtained from the Green's function of the second kind for the rectangular segment as follows:

$$Z_{ij} = j \frac{\omega \mu d}{2ab} \sum_{mn} \frac{\epsilon_m^2 \epsilon_n^2}{[k_{xm}^2 + k_{yn}^2 - k^2]} \cos(k_{xm} x_i) \cos(k_{yn} y_i) \cdot \cos(k_{xm} x_j) \cos(k_{yn} y_j) \frac{\sin(p_i W/2) \sin(p_j W/2)}{(p_i W/2)(p_j W/2)} \quad (6)$$

where

$$k_{xm} = m\pi/a, \quad k_{yn} = n\pi/b, \quad k^2 = \omega^2 \epsilon \mu, \\ p_{i,j} = \begin{cases} k_{xm} & (y_i, j=0, b) \\ k_{yn} & (x_i, j=0, a) \end{cases}, \quad \epsilon_m = \begin{cases} 1 & (m=0) \\ \sqrt{2} & (m \neq 0) \end{cases}, \quad \epsilon_n = \begin{cases} 1 & (n=0) \\ \sqrt{2} & (n \neq 0) \end{cases}.$$

The more familiar scattering parameters are then obtained by using standard Z-matrix to S-matrix transformation.

The magnitudes of the S-matrix elements as a function of frequency for a fundamental type-A hybrid with $a=13.47\text{mm}$ (resulting in the fundamental frequency $f_{10,01}=7\text{GHz}$) and $T_1=T_2=T_3=T_4=4.90\text{mm}$ were computed. This fundamental circuit, as can be seen from Fig. 3,

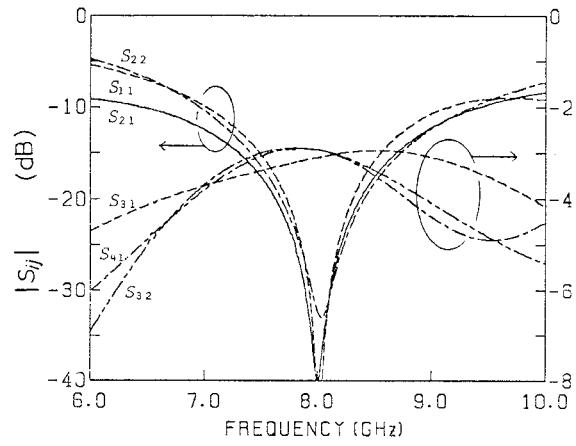


Fig. 4. Computed scattering parameters of an improved type-A hybrid with rearranged ports and modified size of rectangular disk.

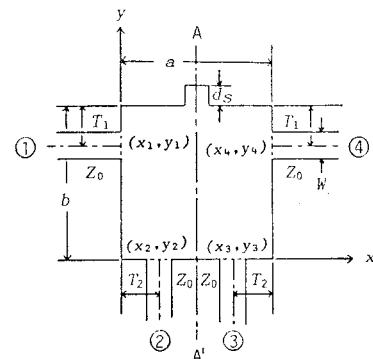
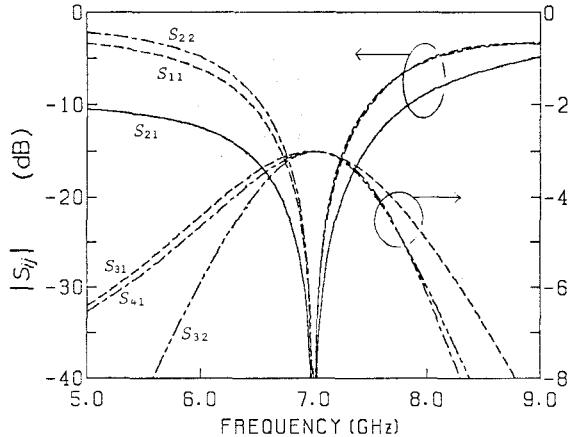


Fig. 5. Configuration of a type-A hybrid with a capacitive stub.


suffers considerably from a deterioration in hybrid property by the debasing influence of the higher order resonant modes.

Improvements on hybrid characteristics

In this section, we try to improve on the spoilt characteristics upon consideration of the higher order modes and without loss in simplicity of the structure. Powell's method [6] is employed as a mathematical technique for optimization.

First, the positions of the coupling-ports and the size of the rectangular disk are determined by the above optimization technique. As an example, the computed S-parameters for an improved type-A hybrid are shown in Fig. 4. Its optimized design parameters are given as the insert in the figure also.

A better improvement can be obtained by adding an appropriate convex (capacitive stub) at the circum-

Design parameters: $a=13.92\text{mm}$, $b=13.61\text{mm}$
 $T_1=3.15\text{mm}$, $T_2=5.05\text{mm}$, $d_s=2.95\text{mm}$

Fig. 6. Computed scattering parameters of the improved type-A hybrid with a capacitive stub.

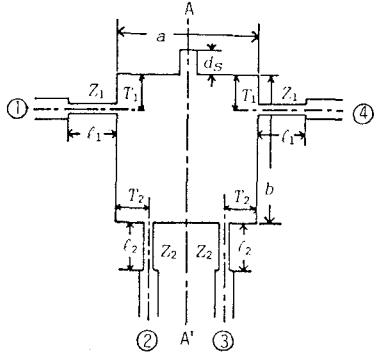
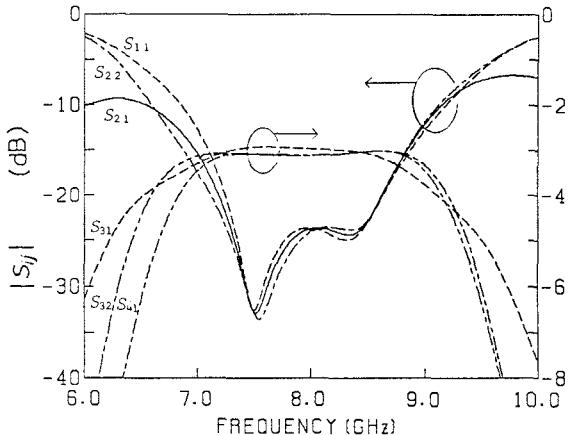
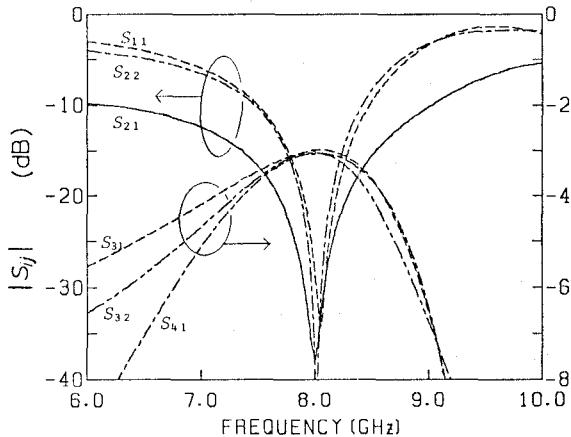
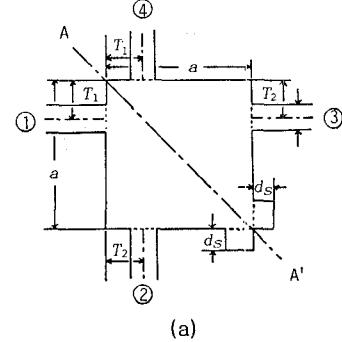





Fig. 7. A circuit pattern of a type-A hybrid with a capacitive stub and impedance steps.

Design parameters: $a=11.78\text{mm}$, $b=12.19\text{mm}$
 $T_1=1.40\text{mm}$, $T_2=3.58\text{mm}$, $Z_1=90.7\Omega$, $Z_2=91.1\Omega$
 $\ell_1=9.92\text{mm}$, $\ell_2=10.92\text{mm}$, $d_s=2.83\text{mm}$

Fig. 8. Computed scattering parameters of the improved type-A hybrid with high impedance-steps and a capacitive stub.

Design parameters: $a=11.80\text{mm}$, $T_1=3.97\text{mm}$
 $T_2=5.65\text{mm}$, $d_s=0.84\text{mm}$

Fig. 9. (a) A circuit pattern of a type-D hybrid with two capacitive stubs and (b) its computed scattering parameters.

ference of the disk as shown in Fig. 5. Fig. 6 shows the optimum design parameters and the computed S -parameters. Here, however, the center frequency is chosen 7 GHz, because ports 2 and 3 overlap each other for the center frequency of 8 GHz.

Next, we try to widen the bandwidth by inserting an impedance step between the rectangular disk and each coupling-port in the manner illustrated in Fig. 7. As can be seen from Fig. 8, the bandwidth of a type-A hybrid with high-impedance steps is considerably broadened by using jointly a stub.

Similar improvements are obtained for other types also, but here omitted with the exception of a type-D hybrid with two additional capacitive stubs shown in Fig. 9.

Experimental results

In order to confirm the above computed results, some tested hybrids were fabricated on a 1/16-inch-thick Rexolite 1422. Fig. 10, 11, and 12 exhibit the X-

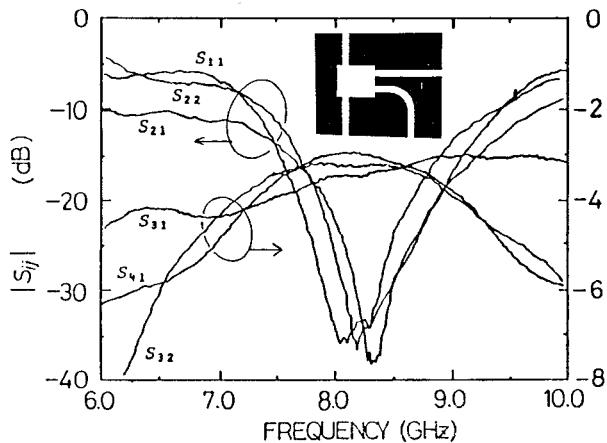


Fig. 10. Measured scattering parameters of the experimental type-A hybrid with rearranged ports and modified size of rectangular disk (Refer to Fig. 4).

Y recordings of $|S_{ij}|$ made with HP's 8755S Frequency Response Test Set i,j corresponding to the hybrids shown in Fig. 4, 8, and 9, respectively. The theoretical and experimental results are in good agreement with each other.

Conclusions

A constituting principle of rectangular disk 3 dB hybrids and methods of improving the characteristics to a practicable level have been described. As four different types occurs in principle, we can properly use them according to the requirement for the layout on a circuit. An examination of a rectangular disk directional coupler with an arbitrary power-split ratio would be an interesting subject for further work.

References

- [1] T. Okoshi, T. Takeuchi and J. Hsu: "Planar-circuit-type 3 dB hybrid", *Trans. IECE Japan (B)*, **58-B**, 8, pp.408-415, Aug. 1975.
- [2] G. Riblet and E. R. Bertil Hansson: "Some properties of the matched, symmetrical six-port junction", *IEEE Trans. Microwave Theory Tech.*, **MTT-32**, 2, pp.164-171, Feb. 1984.
- [3] K. C. Gupta and M. D. Abouzahra: "Analysis and design of four-port and five-port microstrip disc circuits", *IEEE Trans. Microwave Theory Tech.*, **MTT-33**, 12, pp.1422-1427, Dec. 1985.
- [4] I. Ohta, T. Yamashita and I. Hagino: "Optimum ports arrangement for a planar-circuit-type 3 dB hybrid", *Trans. IECE Japan(E)*, **E67**, 5, pp.287-288, May 1984.

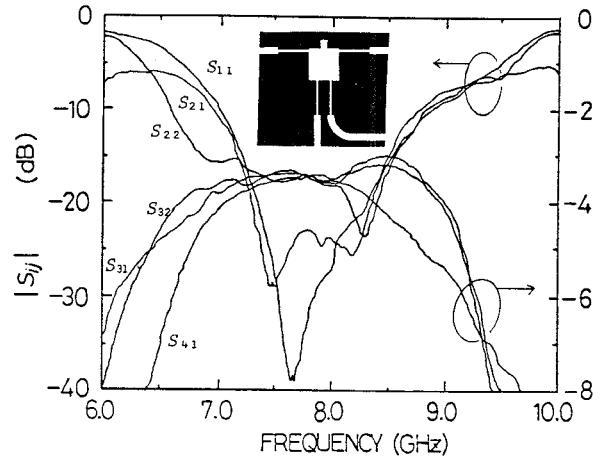


Fig. 11. Measured scattering parameters of the experimental type-A hybrid with a capacitive stub and high impedance-steps (Refer to Fig. 8).

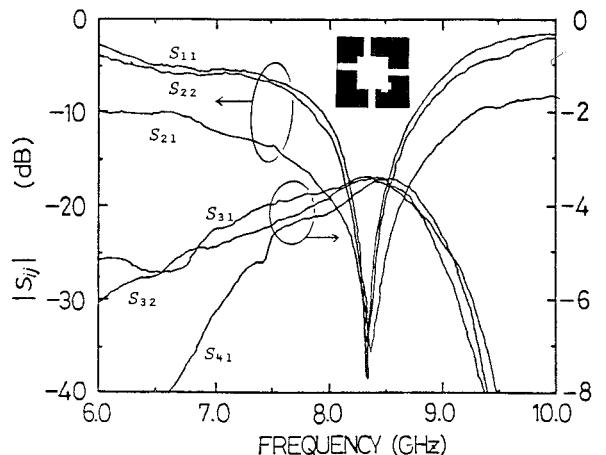


Fig. 12. Measured scattering parameters of the experimental type-D hybrid with two capacitive stubs (Refer to Fig. 9).

- [5] I. Ohta, I. Hagino and T. Kaneko: "Improved circular disk 3-dB hybrids", *Trans. IECE Japan (C)*, **J70-C**, 3, pp.350-358, Mar. 1987.
- [6] M. J. D. Powell: "An efficient method for finding the minimum of a function of several variables without calculating derivatives", *Computer J.*, **7**, pp.155-162, July 1964.